Crystal phase engineered quantum wells in ZnO nanowires.

نویسندگان

  • V Khranovskyy
  • Alexey M Glushenkov
  • Y Chen
  • A Khalid
  • H Zhang
  • L Hultman
  • B Monemar
  • R Yakimova
چکیده

We report the fabrication of quantum wells in ZnO nanowires (NWs) by a crystal phase engineering approach. Basal plane stacking faults (BSFs) in the wurtzite structure can be considered as a minimal segment of zinc blende. Due to the existing band offsets at the wurtzite (WZ)/zinc blende (ZB) material interface, incorporation of a high density of BSFs into ZnO NWs results in type II band alignment. Thus, the BSF structure acts as a quantum well for electrons and a potential barrier for holes in the valence band. We have studied the photoluminescence properties of ZnO NWs containing high concentrations of BSFs in comparison to high-quality ZnO NWs of pure wurtzite structure. It is revealed that BSFs form quantum wells in WZ ZnO nanowires, providing an additional luminescence peak at 3.329 eV at 4 K. The luminescence mechanism is explained as an indirect exciton transition due to the recombination of electrons in the QW conduction band with holes localized near the BSF. The binding energy of electrons is found to be around 100 meV, while the excitons are localized with the binding energy of holes of ∼5 meV, due to the coupling of BSFs, which form QW-like structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Core-shell multi-quantum wells in ZnO/ZnMgO nanowires with high optical efficiency at room temperature.

Nanowire-based light-emitting devices require multi-quantum well heterostructures with high room temperature optical efficiencies. We demonstrate that such efficiencies can be attained through the use of ZnO/Zn((1-x))Mg(x)O core-shell quantum well heterostructures grown by metal organic vapor phase epitaxy. Varying the barrier Mg concentration from x = 0.15 to 0.3 leads to the formation of misf...

متن کامل

First-principles study of polarization in Zn1−xMgxO

Wurtzite ZnO can be substituted with up to 30% MgO to form a metastable Zn1−xMgxO alloy while still retaining the wurtzite structure. Because this alloy has a larger band gap than pure ZnO, Zn1−xMgxO/ZnO quantum wells and superlattices are of interest as candidates for applications in optoelectronic and electronic devices. Here, we report the results of an ab initio study of the spontaneous pol...

متن کامل

Crystal Phase Quantum Well Emission with Digital Control

One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of cryst...

متن کامل

Structure study of electrodeposited ZnO nanowires

In this work, we report on the structure study of electrodeposited ZnO nanowires. The samples were mounted as a working electrode and the deposition was performed in a classical three electrodes electrochemical cell. For obtaining ZnO nanowires, the working electrode was a polycarbonate membrane with a random distribution of nanometric pores, gilded one side to ensure electric contact. The morp...

متن کامل

Strong Optical Filed Intensity Improvement Introducing InGaAsP Quantum Wells in InP Nanocavity

This paper presents the optical characteristics of a quantum well doped InP nanocavity.The resonance wavelength of the nanocavity and the optical field intensity is calculated before and after presence of the quantum wells. The resulting huge filed intensity of about 1.2×108 respect to the incident field is the effect of quantum wells placed in vicinity of center of nanocavity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 24 21  شماره 

صفحات  -

تاریخ انتشار 2013